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CHAPTER 1

Introduction

1.1 Motivation

ODERN processor microarchitectures execute instructions speculatively to avoid pipe-

line bubbles and increase performance [1, chapter 3]. Without doing so, instructions

that change the program counter (PC) or have other effects must finish execution before

the next instructions are fetched, meaning that each clock cycle is not fully utilised —
there is a “bubble”.

Speculative execution is informed by several modes of prediction, including branch
direction prediction (BDP)® — a Boolean prediction for whether a branch is taken; branch
target prediction — which 64-bit address is next; memory dependence prediction; and
prefetching. Prediction accounts for a significant portion of transistor and area budgets
— the resources available for building a microprocessor — as well as development and
verification time. This significance can be seen from the paper “Evolution of the Samsung
Exynos CPU Microarchitecture” [2] dedicating four of its 11 chapters to prediction®, as
well as the large area dedicated to branch prediction (direction and target) in AMD’s
Zen 2 core, shown in figure 1.1.

Figure 1.1: An annotated die shot of a Zen 2 core.
Image credit: die shot by Fritzchens Fritz [3], annotated by Ashley Webb [4] based on
an AMD slide deck [5] presented at ISSCC 2020, accompanying a paper on the
microarchitecture [6].

SBDP is not a widely used acronym in literature; it is more commonly called branch prediction but
I find that too vague. I overload it to refer to both branch direction prediction and branch direction
predictors — hardware that performs these predictions.

60One of these also concerns cache management.



1.2 Branch prediction 1 INTRODUCTION

The ideas and organisation of a predictor for one mode can be reused for another
mode. For example, TAGE, the state-of-the-art BDP, was introduced with a variant for
branch target prediction [7] and has been shown to be effective for memory dependence
prediction in simulation [8].

In this dissertation, I have investigated the possibility and effectiveness of using one
parameterisable predictor module for two modes of prediction — BDP and next-address
prediction (NAP)” — effectively reusing source code between them. After reviewing the
literature, I believe this approach to be novel.* The predictor is implemented for Toooba,
an open-source RISC-V CPU written in Bluespec SystemVerilog (BSV).

Benefits of a parameterisable predictor One predictor that can be instantiated for
multiple modes of prediction carries the following benefits.

e Less time in total is required for development and verification. This allows more
time to optimise the design.

o Speculative execution has caused vulnerabilities in commercial microprocessors. In
particular, Spectre variant two involves an attacker training the branch target buffer
(BTB) [10] — hardware that performs branch target prediction. BDP has also been
successfully attacked, with BranchScope [11] for one-level® predictors and Blueth-
under [13] for two-level predictors. Reusing source code between prediction modes
decreases the attack surface for such vulnerabilities.

e Advanced techniques and predictor organisations may be easily shared between
modes of prediction; e.g., there are numerous techniques for BDP [12] that other
modes may benefit from.

1.2 Branch prediction

Control hazards to pipelined processors occur in the presence of instructions that change
the PC — we do not know which instructions are next until these instructions finish ex-
ecution. However, an educated guess can be made, although it bares the cost of the
hardware overhead to make these predictions and deal with incorrect predictions (mispre-
dictions/misspeculation). Pipeline bubbles can be made smaller or avoided entirely when
the prediction is correct, and high-accuracy predictors can make this the common case.

This brief introduction will be limited to the branch and jump instructions in the
RISC-V instruction set architecture [14, section 2.5].

1.2.1 Branch direction prediction

Branch instructions (branches) have a condition and an offset. The branch is taken when
the condition is met; otherwise, it is not taken. The PC following a branch either points
to the next instruction in program-order when the branch is not taken, or becomes offset
by an amount statically specified in the instruction when the branch is taken.

"NAP is an alternative to branch target prediction — see § 1.2.2. I overload NAP in the same manner
as BDP to refer to both next-address prediction and next-address predictors.

8This approach should not be confused with omnipredictors, which share a unified memory across
modes of prediction [9].

9The number of levels refers to how many prediction tables the predictor has [12].



1.3 An example of parameterisability: saturating counters 1 INTRODUCTION

A prediction for a branch is binary — either ‘taken’ or ‘not taken’ — and can be rep-
resented with a Boolean value; this is referred to as the direction of the branch and is a
dynamic property. There are only two possible next instructions after a branch.

1.2.2 Branch target prediction and next-address prediction

Jump instructions (jumps) are unconditional and set the PC to an offset from a base of
either the jump’s address (the current PC) or the value in an architectural register. When
a register value is used as the base, the next instruction could be located anywhere in the
address space; therefore, the target cannot be statically known.

A prediction for a register-based jump is the target address of the jump, a dynamic
property. There are many possible next instructions after a jump.

Branch target buffers BTBs are a common form of branch target prediction hardware.
They are a cache of branch addresses to their targets, usually with tagged entries [15].

Next-address prediction “Next-address prediction”, though not used in literature, is
a narrower term that I prefer to “branch target prediction” to mean the use of a BTB on
every instruction’s address, regardless of the instruction type. I use this term because it
describes the way Toooba uses its BTB more aptly.

During the instruction fetch stage, the next address or addresses to fetch from are
retrieved from the BTB without knowing if the current instruction or instructions are
jumps or branches yet, since this is before the instruction decode stage.

Typically, a BTB does not store an entry for instructions that cannot modify the PC;
therefore, a miss is interpreted as PC +4 (the next instruction in program-order). NAP is
also performed for jumps that offset the new PC from the address of the jump (the PC),
for which the target can be statically known; a BTB should only get this case wrong once
— a compulsory miss — unless aliasing/eviction occurs.

When using the compressed extension, as Toooba does, NAP is performed for each
instruction fragment — two bytes that may be the entirety or half of an instruction. BTB
misses are instead interpreted as PC 4 2 and targets are only given for the second half of
uncompressed branches and jumps — the first half should produce a miss, pointing to the
second half.

Relation between next-address prediction and branch direction prediction
NAP is performed on all instructions, so it overlaps with the role of BDP. Since NAP is
performed earlier in the pipeline than BDP, the NAP can be initially followed and then
overruled by a BDP if the instruction is a branch. The combination of both techniques
can further reduce the penalty for branches to zero cycles in the best case, completely
avoiding a pipeline bubble; whereas BDP alone would still have a small bubble.

In the next section, we will see how hardware may be adapted to work for both of
these modes.

1.3 An example of parameterisability: saturating counters

Two-bit saturating counters — a form of finite-state machine!® that count up and down
but cannot go above or below boundary values — are a commonly used element in a

0No start state is specified.



1.4 Success criteria 1 INTRODUCTION

variety of predictors [16, 17] because they add hysteresis when the same result occurs
multiple times. When used in a one-level BDP, a branch’s counter is incremented when
the branch is taken and decremented when it is not taken, as shown in figure 1.2a. The
next prediction is the most significant bit of the counter.

This is isomorphic to a Boolean “remembered value” with a one-bit saturating counter
of ‘confidence’, shown in figure 1.2b. The next prediction is the remembered value.

If we swap the Boolean for another type, the predictor can be used for another mode.
For example, a NAP will need an address to be remembered. This idea forms the basis
for the parameterisable predictor. We could also parameterise the number of bits for the
confidence. Section 3.4 describes my implementation of this parameterisable counter.

NT T NT T

NT T T NT

NT
(b)

Figure 1.2: Isomorphism between a two-bit saturating counter (a) and a Boolean
remembered value with one-bit of confidence (b).
NB: T and NT mean taken and not-taken branches respectively.

1.4 Success criteria

The success criteria presented here differ from the criteria presented in my project pro-
posal: the base predictor organisation is Gselect instead of TAGE because it is more
feasible to implement; the structure of the criteria is condensed; and the focus on tests
has been removed because they demonstrate a professional approach to software engin-
eering (§ 2.8) rather than project success.

1. Implement a Gselect predictor in BSV that is parameterisable in the data type it
predicts and the global history it keeps.

2. Instantiate the predictor for BDP in Toooba and obtain similar performance to
Toooba’s current Gselect BDP.

3. Instantiate the predictor as a BTB in Toooba for NAP and evaluate it against
Toooba’s BTB.

This criteria is expanded upon when we analyse the project requirements in section 2.7.

10



1.5 Contributions 1 INTRODUCTION

1.5 Contributions

This dissertation and the underlying project (open source on GitHub with appropriate
licensing) make several contributions:

« a description of Toooba’s front-end (§ 2.4.1), which serves as a good reference for
anyone working on Toooba (including future Part II students — I certainly would
have benefitted from this!);

 an accepted bug-fix for a failing test in Toooba (§ 3.1) with security implications,
which also affects CHERI-RISC-V;

o a well-tested BSV datatype and function for a remembered value with confidence,
as described in section 1.3 (ValueWithConfidence — § 3.4);

o a well-tested BSV module for register files that support multiple writes per cycle
(TRegFile — § 3.7);

« a modification to Toooba to pass “prediction tokens” rather than “training informa-
tion” through the pipeline, supporting the use of alternate BDP and NAP interfaces
and giving power benefits (§ 3.5);

o a parameterisable Gselect predictor, which my review of prediction literature sug-
gests to be novel, for Toooba (§ 3.10), carrying benefits of less time for development
and verfication, a decreased attack surface for attacks like Spectre, and allowing
techniques and organisations to be shared between modes of prediction;

e an investigation into the performance of instantiations of the parameterisable pre-
dictor for BDP and NAP (§ 4); and

« a parameterisable predictor following a custom organisation — hash-tagged Gselect
(§ 3.11) — and an investigation into the performance of its instantiations for BDP
and NAP (§ 4.5).

1.6 A note on software licenses

This project uses ChampSim and Toooba. They are within git submodules containing
forked (modified) versions of both software. ChampSim is licensed under the Apache 2.0
license which I have respected by retaining the license and noting where modifications
or additions have been made. Toooba is licensed under a mixture of the MIT license
and the Apache 2.0 licenses, which I have respected by retaining the licenses and noting
where modifications of additions have been made. See the “README” in the source-code
submission for clarifications.

11



CHAPTER 2

Preparation

HIS section covers the Gselect BDP (§ 2.1), which is the organisation used for the
T parameterisable predictor; the ChampSim trace simulator (§ 2.2), which served as an
initial development environment; the programming language BSV (§ 2.3), which Toooba
and the parameterisable predictor are written in; and the open-source CPU Toooba,
including its interfaces for BDP and NAP and their differences (§ 2.4) — included because
the parameterisable predictor is instantiated for BDP and NAP within Toooba and has
to account for the interface differences. We then cover the benchmarks (§ 2.5) used for
evaluation and for guiding the implementation; the project’s starting point (§ 2.6); the
project requirements (§ 2.7), which expand on the success criteria; and the engineering
techniques used throughout (§ 2.8).

2.1 The Gselect branch direction predictor

The parameterisable predictor uses an underlying organisation of Gselect.

The Gselect BDP, for which Toooba has an implementation, combines local and global
history. As shown in figure 2.1, Gselect predicts the direction of a branch by indexing the
prediction table (PT) of saturating counters; the branch is predicted to be taken iff the
most significant bit of the selected counter is 1. The index is a concatenation of select
bits from the branch’s address and the global history — bits representing the most recent
branch directions across all branches, stored in a shift register called the global history
register (GR). The inclusion of global history allows correlation between branches to be
exploited when execution follows common paths.

Counts
Taken —= — predictTaken
Taken —= GR
n
PC
I
m n+m

Figure 2.1: The organisation of the Gselect BDP,
using m bits from the PC and n recent global branch directions.
Image credit: Scott McFarling [18].

Gshare is another BDP which is extremely similar to Gselect, but combines the branch
address and GR via exclusive-OR rather than concatenation [18]. It can be considered a
“sister” predictor to Gselect.

12



2.2 ChampSim 2 PREPARATION

BDPs that employ global history (with particular mention of Gshare) benefit from
immediate, albeit speculative, updates to the GR [19]. This technique is used in Toooba’s
implementation of Gselect. It requires a rollback mechanism to remove incorrect history.

Gselect was chosen for this dissertation because it strikes a good balance between be-
ing simple enough to implement in a reasonable amount of time (c.f. TAGE) and complex
enough (dynamic with a combination of local and global history) to be worth paramet-
erising, with the type used for global history items being an important parameter. Gselect
as described by Scott McFarling [18] requires only one PT!! unlike its predecessor which
had multiple PTs, indexed by bits from the address of the branch only, and then one of
these results is chosen by the GR [20]. Gshare would have been another good option.

I implemented Gselect myself rather than using Toooba’s to ensure I understand it
fully and am able to extend it. It was implemented with parameterisability in mind from
the beginning.

2.2 ChampSim

I explored different approaches for evaluating predictors. One option was ChampSim, an
“open-source [trace-based| simulator” [21], “[designed to have] low [start-up| time, broad
applicability, and high [configurability]” [22].

A fellow Part II candidate, whose blind grading number is 2373A, made modifications
to allow branch predictors written in BSV and conforming to Toooba’s BDP interface to
be simulated. These modifications were made before we began our Part II projects, so
our projects were in no way collaborative. They generously allowed me to use and modify
their version, which I used to get started because it offered a minimal environment for a
BDP written in BSV to be compiled and evaluated.

I removed some of their features that are irrelevant to this project and partially re-
factored the rest. The motivation for this refactoring was to gain an understanding of the
code. In hindsight, this was not necessary.

Ultimately, I decided against using ChampSim for the rest of the project because
of three key limitations: as implemented, BSV BDPs are not utilised in a superscalar
manner, meaning the accuracy and correctness of a BDP for Toooba is not fully invest-
igated; further modifications would be required after I modified Toooba’s BDP interface
(§ 3.6); and only traces from x86 programs are supported — a different instruction set
from RISC-V.

I include this section because ChampSim served as an initial environment for my
implementation while I was still gaining familiarity with BSV, Toooba, and BDPs. It also
developed my understanding of trace simulation and developed my ability to understand
an existing codebase.

2.3 Bluespec SystemVerilog

BSV is an open-source hardware description language (HDL), which Toooba and the
parameterisable predictor are written in.

It “uses SystemVerilog’s model of interfaces and interface instances” and “types and
type system” [23]. BSV consists of interfaces which modules may implement. Modules
consist of methods and rules, and may call another module’s methods via an interface.
Rules fire each cycle if their conditions are met.

"1 This makes Gselect a one-level predictor, despite using a mixture of local and global history.

13



2.4 Toooba 2 PREPARATION

It is an excellent language for this dissertation because “[BSV’s| features — robustness
in behavior due to cross-modular rules; strong static checking; and powerful elaboration
from orthogonality and type parameterization — combine to improve the ability to reuse
code” [23, emphasis added]. In particular, the parameterisation of hardware modules with
types is crucial to this project — as described in section 1.3, a prediction hardware can be
parameterised with a Boolean prediction to be a BDP or with an address to be a NAP.

Unfortunately, working in BSV has been difficult in comparison to mainstream HDLs.
Its lack of popularity means that online resources are limited; there are 13 questions about
it on stackoverflow.com and 201 topics on groups.io as of 15th April 2025. I used the
Cambridge BSV web-tutor [24], which consists of tutorials and exercises, to develop my
understanding initially, but was mostly reliant on the reference guides [25].

BSV also gives extremely verbose error messages — a single error that I encountered
was 250,000 lines long!

Notwithstanding the difficulties faced, I am glad to have worked in this language.

2.4 Toooba

Toooba is an open-source RISC-V CPU from Bluespec, Inc. that is superscalar and out-
of-order. The parameterisable predictor is designed for instantiation as a BDP and a NAP
within Toooba.

Toooba is based on MIT’s RiscyOO [26], which was built under a framework of com-
posable modular design (CMD)'? [27]. Notable additions from RiscyOO to Toooba include
support for compressed instructions and supervisor and user privilege modes.

Toooba was chosen for this project because it is open-source; written in BSV, which
was the perfect HDL for this project as described in the previous section; and is “intended
as a high-end application processor” [26], meaning the BDP and NAP predictors are in-
stantiated in a realistic setting, adding credibility to the investigation into their accuracies
and performance, benefitting industry and academia.

2.4.1 Front-end

Documentation for Toooba does not exist, so this section contributes a description of the
front-end, with emphasis on prediction. This description is useful for understanding BDP
and NAP within Toooba and for understanding the bug that I fix in section 3.1. There
is documentation for RiscyOO [28], which informs much of this section.

Figure 2.2 shows the pipeline stages Fetch 1, Fetch 2, and Decode. Fetch 1 uses a
NAP to choose the next PC to fetch from. Decode also chooses the next PC with a
combination of a BDP and a return-address stack (RAS) that takes priority. If the PC
predicted by Decode is different than Fetch 1 predicted, it redirects the pipeline (sets PC
for next fetch) and trains the NAP. The execution stages can also redirect the pipeline
and train both the NAP and BDP.

In addition to NAP, Fetch 1 requests instruction fragments from the instruction cache
(using the physical addresses — translated from virtual addresses via the translation look-
aside buffer (TLB)) and may also perform memory-mapped input/output operations.
Fetch 2 arranges instruction fragments to be decoded. In addition to BDP, Decode
combines instruction fragments into instructions where appropriate and decodes them,
passing the result to the Rename stage.

2More detail in § 2.8.2.
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2.4 Toooba 2 PREPARATION

Toooba has one fewer fetch stage than RiscyOO due to caching TLB entries for instruc-
tion addresses in a micro-cache that can be accessed without a cycle between requesting
and receiving a response. Because of this it recovers from pipeline flushes faster when it
already has a translation for the virtual page in the micro-cache.

Misspeculation is dealt with via numbered epochs; a mismatch in expected epoch
indicates misspeculation.

The front-end is always active, even during stalls, so it is possible for the same training
of predictors to be repeated despite not progressing through the program.

For both BDP and NAP training, there is only one update per cycle.

Front-End

From Execute

ITLB
p-cache

Instructions 1> To Rename

Get TLB
Response

L1ITLB

L11Cache
(Stall)

Stall : Stall

4 A\
L2 TLB L2 Cache

Figure 2.2: Toooba’s front-end.
N.B. “I” means “instruction” for TLB and cache.

We will now cover the BDP and NAP interfaces in detail to inform the requirements
and design of the parameterisable predictor.

2.4.2 Branch direction prediction interface

Toooba uses the interface shown in listing 2.1 for BDP.

typedef struct {
Bool taken;
trainInfoT train;
} DirPredResult#(type trainInfoT) deriving(Bits, Eq, FShow);

interface DirPred#(type trainInfoT);
method ActionValue#(DirPredResult#(trainInfoT)) pred;
endinterface

interface DirPredictor#(type trainInfoT);
method Action nextPc (Addr nextPc) ;
interface Vector#(SupSize, DirPred#(trainInfoT)) pred;
method Action update(Bool taken, trainInfoT train, Bool
mispred) ;
method Action flush;
method Bool flush done;
endinterface

Listing 2.1: Toooba’s BDP interface.

15




~N O T W N

2.4 Toooba 2 PREPARATION

Because Toooba is superscalar, multiple predictions (pred) can be made each cycle.
SupSize denotes the “superscalar size” or “width” — how many instructions can be in
each stage of the pipeline each cycle — and is set to 2; thus zero, one, or two predictions
may be made each cycle.

nextPc is used to tell the BDP the “base” address to perform predictions from and
is the address of the first instruction in the superscalar “batch”. NB: Addr is the type
used for 64-bit addresses. The BDP assumes the second instruction to have an address
of nextPc + 4, though this is not always the case if the first instruction is compressed or
the NAP predicted a taken branch or jump for the first instruction.

The update method is used to train the predictor based on whether a branch was ac-
tually taken when it was executed. The training information (trainInfoT) — information
to identify the branch/PT entry and anything else the BDP relies on to update itself —
that was returned alongside the prediction for the now-executed branch is passed back to
the BDP, after having been through the pipeline alongside the branch.

The methods flush and flush_done are only used (and given a non-trivial definition)
in secure contexts — beyond the scope of this dissertation.

2.4.3 Next-address prediction interface

Toooba uses the interface shown in listing 2.2 for NAP.

interface NextAddrPred#(numeric type hashSz);
method Action put_pc(Addr pc);
interface Vector#(SupSizeX2, Maybe#(Addr)) pred;
method Action update (Addr pc, Addr brTarget, Bool taken);
method Action flush;
method Bool flush_done;
endinterface

Listing 2.2: Toooba’s NAP interface.

put_pc, pred, update, flush, and flush_done serve the same function as the methods
and interfaces in the same order of the BDP interface. However, there are some crucial
differences for pred and update described in the following section. NB: hashSz is specific
to the BTB implementation and is not discussed.

2.4.4 Differences between the branch direction prediction and next-address
prediction interfaces

Toooba’s NAP interface has several differences from its BDP interface — enumerated
below — which had to be considered in the requirements and design of the parameterisable
predictor.

1. The maximum number of predictions are made each cycle and they are all called and
returned at once rather than individually, so pred returns a vector of predictions
rather than a vector of interfaces with a single pred method.!?

2. The NAP operates on each instruction fragment rather than each instruction. Nat-
urally, the PC used for each prediction in the batch increments by 2 rather than 4
and there are SupSize X 2 predictions (SupSizeX2).

I3My supervisor and I believe that it is a mistake for pred to be an interface rather than a method;
it is a language quirk that this does not affect compilation.

16
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3. The NAP can miss and return Invalid rather than a Valid address, thus the return
type for each prediction is a Maybe#(Addr). Invalid is used to represent the next
address being PC + 2 rather than Valid (PC + 2). The ability to miss arises from
using tags for P'T entries.

While we are on the topic of the Maybe# (Addr) type, there is also an important
distinction between returning Valid(PC + 2) and Invalid. While these are
somewhat equivalent, Toooba interprets Valid(addr) as a redirect to addr,
reducing pipeline throughput by ending the current fetch batch, and Invalid
as the common case that the next half-word is contiguous to the current half-
word.

4. The NAP does not return any training information to be passed back to it.
5. The NAP is not informed via update if it correctly predicted Invalid.
6. update does not have a misprediction (mispred) parameter.

7. 64 bits of a possible address and one validity bit is a much longer result type than
the single bit used in the global history of a BDP.

2.5 Benchmarks

The primary benchmark used throughout the implementation of BDPs and the paramet-
erisable predictor was CoreMark® [29]. We can establish a change in the clock cycles per
instruction (CPI) as a proxy for a change in predictor accuracy when nothing besides the
predictor in question changes. This was used as a “sanity check” to guide the implement-
ation, verifying that each step was in the right direction. The magnitude of a CPI change
does not mean as much since it will be affected differently between NAP and BDP. Due
to the small length of CoreMark® (189 K instructions) it is likely weighted towards the
start-up phase of a predictor’s life rather than the most accurate steady-state; therefore,
it does not count as a full evaluation.

For the evaluation proper, I used a subset of the MiBench suite [30] of embedded
benchmarks, prepared by Jonathan Woodruff. The subset consists of 11 programs across
automotive and industrial control, consumer devices, networking, security, and telecom-
munications workloads. Instruction counts range from 106 K — 3,733 K, with a median
of 2,370 K and a total of 22 M.

2.6 Starting point

The starting point for this project consists of Toooba (§ 2.4), the organisation of the
Gselect BDP (§ 2.1), the CoreMark® and MiBench benchmarks (§ 2.5), and the modified
version of ChampSim (§ 2.2).

I had completed roughly one third of the Cambridge BSV web-tutor (§ 2.3) before
beginning the project.
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2.7 Requirements analysis

I use the MoSCoW (must /should/could /won’t have) framework to prioritise the require-
ments of this project because it emphasies key requirements and prevents scope creep.
The success criteria (§ 1.4) inform the requirements and the requirements can be seen
as an extension of them. KEach requirement is traceable and worthy of documentation;
actionable; and either testable or measurable, as recommended in [31]. Testability may be
a yes/no judgement and measureability is from the benchmarks described in section 2.5.

The parameterisable predictor must

M1 be instantiated by itself as a BDP;
M2 be instantiated by itself as a NAP;
M3 use an organisation originating directly from the ideas of Gselect; and

M4 respect the interface differences between BDP and NAP in Toooba (§ 2.4.4) or
rework them.

The parameterisable predictor should

S1 achieve a comparable accuracy and performance as Toooba’s Gselect BDP; and

S2 make minimal modifications to Toooba.

The parameterisable predictor could

C1 achieve comparable or better accuracy and performance to Toooba’s BTB for NAP.

The parameterisable predictor won’t
W1 be instantiated for modes of prediction besides BDP and NAP.

As Gselect is an organisation for BDPs, the accuracy and performance should closely
match Toooba’s own Gselect implementation for the same predictor size. An exploratory

approach is more appropriate for the NAP instantiation, putting it in the “could” category,
although it would be possible for it to outperform Toooba’s BTB at a similar size.
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2.8 Engineering techniques

In order to meet the success criteria and requirements, I took a professional approach to
this project, with the following engineering techniques and an iterative methodology for
project management.

2.8.1 Best practices

o I began using Linux which was not easy but was beneficial to the project.

I used Git and GitHub for version control and back-up. I also used OneDrive for
back-ups (a pain for Linux!).

o [used ChatGPT to generate a script to ignore previously seen warnings when build-
ing Toooba so that I would not glance over warnings that I introduce. I do not claim
credit for the script and it is clearly marked within the submitted repository. Chat-
GPT was an appropriate tool here because of its speed and the fact that the script
does not tackle the intrinsic complexity of the project. The script did contain several
errors which I fixed but it was still faster than writing it myself.

o [ also used BSV scheduling attributes that can turn warnings into errors, e.g.,
fire when enabled specifies that a rule that must fire in any cycle where its ex-
plicit conditions are met (it cannot be implicitly blocked by conditions of methods
it calls).

o When modifying Toooba to support custom BDP and NAP interfaces, I introduced
compilation flags to control which interfaces are used, avoiding version control issues
when evaluating.

2.8.2 Composable modular design

RiscyOO — and by extension, Toooba — were developed under a framework of CMD,
described in [27]:

€€ In CMD, a design is a collection of modules, which interact with each
other according to a set of atomic rules such that,

e The interface methods of modules provide combinational access and per-
form atomic updates to the state elements inside the module;

o Every interface method is guarded, i.e., it cannot be applied unless it is
ready; and

e Modules are composed together by rules or “transactions” which call
interface methods of different modules. A rule either successfully updates
the states of all the called modules or it does nothing. 1

I have used CMD for the development of the parameterisable predictor, which gives
the benefit of “composability when selected modules are refined selectively” — the inner
workings of modules are not seen other than through their interfaces. CMD was easy
to achieve from working in BSV which “provides type checking and enforces a guarded
interface protocol and rule atomicity”. The seminal paper [27] also mentions that “CMD
designs are often highly parameterized” which my project’s designs certainly are!
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2.8.3 Project management

The first step was to analyse the requirements (§ 2.7); I found them to be clear and
unchanging, making project management smooth.

Because I lacked familiarity with BSV and Toooba, I initially used a process of iterative
development to make increasingly sophisticated BDPs, working up to Gselect.

After this initial development phase, I analysed the differences between BDP and NAP
so that I could design alternate interfaces for them and design the parameterisable Gselect
predictor.

I then used emergent design (§ 3.9) to develop the parameterisable predictor out of
two mostly similar source files for BDP and NAP, refactoring the commonalities out into
the parameterisable predictor. The predictor was instantiated for both BDP and NAP.

Testing was performed throughout and took three forms:

+ Being able to run programs such as CoreMark® demonstrates that the predictors
are working and the results can be used to “sanity check” predictor accuracy. A
subsection of the MiBench suite is used for the full evaluation.

o [ ensured that modified Toooba still passed the suite of ISA tests, although unmod-
ified Toooba was already failing one test for which I delivered a bug-fix (§ 3.1).

o [ created unit tests for ValueWithConfidence and TRegFile.
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CHAPTER 3

Implementation

AFTER describing my fix for a bug causing Toooba to fail an ISA test (§ 3.1) and giving
a repository overview (§ 3.2), we work towards a parameterisable predictor following
the organisation of Gselect that can be instantiated for BDP and NAP within Toooba.

First, I describe my implementation of BDPs for Toooba’s interface, working up to
Gselect (§ 3.3). I then describe my ValueWithConfidence datatype (§ 3.4) which my
Gselect implementation uses. Next, we cover the design process for dealing with the in-
terface differences between BDP and NAP (§ 3.5) and modify Toooba and my Gselect
implementation (§ 3.6), which requires the TRegFile module (§ 3.7). We then traverse
the path to using a modified copy of the same source code for NAP (§ 3.8). This allows
for the commonalities to be refactored out of both designs via emergent design (§ 3.9)
and the parameterisable predictor is born (§ 3.10); it is instantiated for both modes of
prediction. Finally, after being unsatisfied with the results of the evaluation and investig-
ating the cause of this poor performance in chapter 4, I perform one last round of iterative
development to create the parameterisable hash-tagged Gselect predictor (§ 3.11) in order
to meet the final unmet requirement (C1), giving a satisfying and successful end to this
project.

This project is entirely simulation based, using Bluesim, which simulates BSV code.

3.1 A security bug-fix for Toooba

Toooba, without any modifications and cloned from the master branch, was failing an
ISA test. The test is RV64MI-access and involves jumping to an illegal virtual address
[32]. Being able to jump to illegal addresses violates the Sv39 virtual memory system [33,
section 12.4]. This bug also affects CHERI-RISC-V in their fork of Toooba.

The reason for the failure was that the TLB micro-cache (described in § 2.4.1) was
reusing recently translated physical page numbers without checking if the current virtual
address is valid under Sv39. This meant that illegal addresses could be executed without
exception.

I fixed the bug by indexing the micro-cache with full addresses rather than virtual
page number only.

o If an address is valid, we consider a match if the virtual page numbers match,
allowing a reuse of the cached physical page number as before.

o If an address is invalid, we consider a match only if the full virtual address matches.
When there is no match, a TLB response is requested and cached in the next cycle;
it will have an error code. We then use this error response and delete it from the
micro-cache so that normal operation may resume.

My pull request for this fix on the GitHub repository for Toooba has been merged
into the master branch; I am very proud to have contributed a bug-fix with security
implications to an open-source CPU. The fix can be seen in full in appendix A.
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3.2 Repository overview

Below is a representation of the file tree for my repository. Not all files are shown.

/
| evaluation
executables/ . ... Saved executables
1O/ e ettt e Saved logs
evaluation . py..oovviiiiiiii Script to interpret logs
| parameterisable_predictors
GSelecCt/ ...vviiiii i The parameterisable Gselect predictor
PTGS/ oot The parameterisable hash-tagged Gselect predictor
| branch predictors ...... ...ttt BDPs
AlwaysTaken/
SaturationCounter/............oiiiiiiiiiiiiiiiinnnnnnnnnn Local one-level
GSelectBase/ ............... Gselect predictor for the original BDP interface
GSelect/ ....ccovviviiennn.. Gselect predictor for the modified BDP interface
ParamGSelectBdp/............. Instantiation of the parameterisable predictor

PTGS_BDP/ . Instantiation of the parameterisable hash-tagged Gselect predictor
| next_address_predictors

GSelectBtb/

ParamGSelectNap/ ..... Instantiation of the parameterisable Gselect predictor

PTGS_NAP/ . Instantiation of the parameterisable hash-tagged Gselect predictor
N e P Utilities

tValueWithConf idence.bsv
TRegFile.bsv

7Y v Unit tests
tMakefile
| TooobaWrapper
TO00DA, ettt e et e Submodule
try_coremark.sh............ Script to compile Toooba and run a benchmark
filter_known warnings.py..........c.cceeeveunnn. ChatGPT generated script
| ChampSimWrapper
ChampSim. ... .ot e Submodule
try_champsim_bsv_branch.sh
Config. JSOM .o Configuration file
traces/

I split the predictors into BDPs, NAPs, and parameterisable predictors. Each pre-
dictor has its own directory in case it consists of multiple files, though this did not occur.
Some BDPs and NAPs instantiate parameterisable predictors as “inner” predictors.

This structure supports modular experimentation with predictors, allowing results to
be easily collected over benchmarks (contained within Toooba).

The utilities are separate because they are used in all predictor categories. There is a
separation of concerns for utilities and their tests.

I put submodules in wrappers to organise supplementary scripts around them. I
modified both Toooba and ChampSim but the majority of the code is not my own. I
added directories for my predictors to Toooba’s Makefiles.

22



3.3 From the dumbest predictor to Gselect 3 IMPLEMENTATION

3.3 From the dumbest predictor to Gselect

Starting in the modified version of ChampSim (§ 2.2) but then moving onto Toooba
instead, I began implementing BDPs of increasing complexity as I got to grips with BSV.

3.3.1 Always taken

AlwaysTaken.bsv

The simplest BDP organisation is to always predict branches to be taken. This predictor
does not need to update its state, so its update method is defined to be noAction. The
interface requires some training information to be returned through pred[i].pred and
passed back in update, so Bit#(0) (an empty type) is used for trainInfoT.

3.3.2 Local one-level

A k.a. bimodal
SaturationCounter.bsv

[ next made a one-level BDP that uses local history only. As shown in figure 3.1, only lower
bits from the PC are used to index a PT of two-bit saturating counters, i.e., predictions
for a branch are only dependent on the past behaviour of that branch (or branches that
alias to it if there is contension in the PT). The bits used exclude the lowest two bits since
a memory word will usually only contain a single branch.'* The address for the second
prediction in a batch is assumed to be the address of the next word, though this may
not actually be the case due to the presence of compressed instructions. The saturating
counters in the PT are two-bit unsigned integers.

The training information consists of the PC bits used as the PT index and the counter
for that entry.

Counts

Taken —= —= predictTaken

m

Figure 3.1: A local one-level BDP, using m bits from the PC.
Image credit: edited version of figure from Scott McFarling [18].

4The lowest two bits index bytes within a memory word.
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3.3.3 Gselect

GSelectBase.bsv

Gselect is similar to a local one-level predictor (§ 3.3.2) but uses global history as well as
bits from the PC to index the PT. A full description of Gselect can be found in section 2.1.

Using global history results from previous predictions in the same cycle presented
great difficulty but was solved by retaining predictions in a cycle in UnsafeRWires —
RWires “allow data transfer between methods and rules without the cycle latency of a
register” [25] and “unsafe” means that wires can be written to multiple times in the same
rule/method.'

I replaced the two-bit saturating counters with remembered Bools each with a single
bit of confidence — ValueWithConfidence, described in the next section.

The update method gets a fresh copy of the counter from the PT before updating
it, unlike for the local predictor (§ 3.3.2) which uses an outdated copy via the training
information.

On misprediction, the global history is reverted to what it was before the prediction
was made, along with the actual result.

The training information consists of the PT index and the GR, which is actually
redundant as it is included in the index.

3.4 ValueWithConfidence

ValueWithConfidence.bsv

I implemented the datatype ValueWithConfidence — parameterisable in the type of the
value remembered and the number of bits of confidence. I used an instantiation of it in
my Gselect predictor with type Bool and one bit of confidence, which is isomorphic to a
two-bit saturating counter, as described in section 1.3.

ValueWithConfidence is implemented as a struct of the remembered value (of some
given type) and an unsigned integer (of some given number of bits). I have defined a
function updateValueWithConfidence which takes a ValueWithConfidence and a value
of its underlying type. If the new value is the same as the remembered value, the confid-
ence increases by 1, up to the maximum confidence; otherwise, the confidence decreases
and if it would go below zero, the new value is remembered instead with a confidence of
zZero.

I wrote unit tests for ValueWithConfidence, instantiating it for both a BDP and
with two bits of confidence for an enumerated type of my favourite musicians. Both tests
involved incrementing confidence (by giving it the same value again) once it was at the
maximum confidence and remembering a new value once confidence would drop below
zero. It passes the tests.

PMy Gselect implementation does not actually do this and I believe it to be a compiler bug that I
had to use UnsafeRWire instead of RWire. This issue is also the source of the 250,000-line error message
mentioned in § 2.3.
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3.5 Designing for the interface differences

This section makes up a large part of the design phase of my project management meth-
odology (§ 2.8.3). Tt is informed by BDP and NAP (§ 1.2.1, § 1.2.2); Toooba’s front-end
(§ 2.4.1), its prediction interfaces (§ 2.4.2, § 2.4.3) and their differences (§ 2.4.4 —
repeated partially); and the organisation and implementation of Gselect (§ 2.1, § 3.3.3).

I decided that, due to the numerous differences, I would design modified interfaces for
both BDP and NAP in Toooba. The differences are minimal to adhere to requirement S2.

Interface difference for NAP from BDP Design constraint/decision

1. The maximum number of predictions are Alternate NAP interface will follow
made each cycle and they are all called and BDP interface; the NAP caller can
returned at once rather than individually, call all preds together

so pred returns a vector of predictions
rather than a vector of interfaces with a
single pred method.

2. The NAP operates on each instruction The parameterisable predictor
fragment rather than each instruction. should have a parameter for the
number of predictions that can be
made each cycle and a parameter
for which bits of the PC to use.

3. The NAP can miss and return Invalid *
rather than a Valid address, thus the
return type for each prediction is a
Maybe# (Addr).

4. The NAP does not return any training ES
information to be passed back to it.

5. The NAP is not informed via update if it *
correctly predicted Invalid.

6. update does not have a misprediction Alternate BDP interface will not
(mispred) parameter. have the mispred parameter; it is

easy to recalculate.

7. 64 bits of a possible address and one The parameterisable predictor will
validity bit is a much longer result type have a mechanism for condensing
than the single bit used in the global results (of predictions or explicit
history of a BDP. updates) into “history items”.

Rather than storing Invalid, Toooba’s original BTB may miss (or be unconfident in

its result) and return Invalid. In this case — when it was correct to predict Invalid
because the next instruction fragment was at the next contiguous half-word — the BTB is
not informed of its correctness via an update.

The current scheme contradicts the organisation of Gselect which does not support
missing — instead, PT entries alias. I decided to stay closer to Gselect rather than creating
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another predictor organisation.'® This means that Invalid must be stored (with a bit of
confidence) in the PT.

To solve the problem of not getting all the required updates, I decided that old pre-
dictions may be assumed to be correct. I decided that rather than training information
(which only the BDP interface used), the predictors would pass “prediction tokens” which
are used to identify the internally-stored training information that is relevant for this up-
date, assuming this old prediction to be correct. The generated prediction tokens are
eventually re-used so if we have not heard back for some training information that is
about to be overwritten, we use it for an update. This creates a need for multiple updates
per cycle, since there are multiple predictions per cycle that may overwrite old training
information as well as the explicit update method. Training information should be deleted
after an update uses it.

Moving information through the pipeline — meaning more pipeline registers — is a big
power cost in computer architecture [34, chapter 7.7]; therefore, a fixed size prediction
token is more efficient for arbitrarily complex training information because the training
information remains as internal state of the predictor.

My design decisions concluded that

» Toooba would be modified to use prediction tokens rather than training information
for BDP;

o Toooba would be modified to pass prediction tokens for NAP;

« multiple updates may occur each cycle, up to SupSize—+1 for a BDP or SupSizeX2+1
for a NAP;

o each prediction would be an interface with a method rather than a single method
returning a vector of predictions;

o the parameterisable predictor would have a parameter for the maximum number of
predictions each cycle;

o the parameterisable predictor would have a parameter for which bits of the PC to
use;

o neither interface would have a misprediction parameter in their update method;
and

o the parameterisable predictor would have a mechanism for condensing past predic-
tions and results into history items.

3.6 Dealing with the interface differences

From these design decisions, I had to modify Toooba and my Gselect implementation.
I ensured that any modifications to Toooba could be disabled with compilation flags to
avoid version control issues during evaluation.

16 After the evaluation, I created the parameterisable hash-tagged Gselect predictor, which is a custom
organisation (§ 3.11).
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3.6.1 Alternate BDP interface

BrPred.bsv — inside Toooba

Listing 3.1 shows my interface for BDP. It passes prediction tokens rather than training
information and has different arguments to update.

typedef struct {
Bool taken;
dirPredTokenT token;
} DirPredResult#(type dirPredTokenT) deriving(Bits, Eq, FShow
)

interface DirPred#(type dirPredTokenT);
method ActionValue#(DirPredResult#(dirPredTokenT)) pred;
endinterface

interface DirPredictor#(type dirPredTokenT);
method Action nextPc (Addr nextPc);
interface Vector#(SupSize, DirPred#(dirPredTokenT)) pred;
method Action update(dirPredTokenT token, Bool taken);
method Action flush;
method Bool flush done;

endinterface

Listing 3.1: Alternate BDP interface.

3.6.2 Alternate NAP interface

BtbIfc.bsv — new file inside Toooba

Listing 3.2 shows my interface for NAP. It follows the same structure as my BDP interface.
put_pc is a differently named method that is otherwise identical to nextPc; it uses a
different name for consistency with the original NAP interface.

typedef struct {
Maybe#(Addr) maybeAddr;
napTokenT token;
} NapPredResult#(type napTokenT) deriving(Bits, Eq, FShow);

interface NapPred#(type napTokenT);
method ActionValue#(NapPredResult#(napTokenT)) pred;
endinterface

interface NextAddrPred#(type napTokenT);
method Action put_pc(Addr pc);
interface Vector#(SupSizeX2, NapPred#(napTokenT)) pred;
method Action update(napTokenT token, Maybe#(Addr)
brTarget) ;
method Action flush;
method Bool flush done;

27




16

0O 3 O U i W N

— = =
=~ w N — OO

3.6 Dealing with the interface differences 3 IMPLEMENTATION

endinterface

Listing 3.2: Alternate NAP interface.

3.6.3 Modifying Toooba

Listing 3.3 shows one case of how I modified Toooba to support my interfaces. Notice
that compiler directives for conditional compilation are used to determine which interfaces
to compile with, based on the ALTERNATE_IFC_BDP and ALTERNATE_IFC_NAP compilation
flags. Most fields of the struct are omitted.

let out = FromFetchStage{

}s

pc: pc,

// ...

“ifndef ALTERNATE_IFC_BDP
dpTrain: dir_pred.train,
“else

dpToken: dir_pred.token,
“endif

// ...

“ifdef ALTERNATE_IFC_NAP
, napToken: in.napToken,
hiNapToken: in.hiNapToken
“endif

Listing 3.3: The output of Toooba’s front-end (NB: FromDecode would be a better name

for the struct).

3.6.4 Modifying my Gselect

GSelect.bsv

This section describes how I adapted my implementation of the Gselect BDP (§ 3.3.3) to
work for the alternate BDP interface.

Rules are used to apply the up-to SupSize + 1 updates each cycle. The update
method signals to perform an update in one of these rules.

In the update rules, the predictor accesses training information via a register file
indexed by the supplied prediction tokens.

In the update rules, the removed mispred (misprediction) argument is computed
via comparing the predicted direction — obtained via the training information — to
taken.

Training information is signalled to be deleted after an update concerning it is
performed. The deletion doesn’t take place if we instead store new information
when predicting.
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The multiple updates were made possible by using my TRegFile module, described
in the next section, for the PT and stored training information. NB: these extra updates
don’t actually occur for BDP since it receives updates on every prediction and this is
faster than the same prediction token being reused.

3.7 TRegFile: Transactional register file

TRegFile.bsv

Register files in BSV may only be written to once per cycle, making multiple updates per
cycle — as the parameterisable predictor does — difficult. To overcome this limitation, I
developed the transactional register file, or TRegFile.

The TRegFile, as shown in figure 3.2, supports multiple writes per cycle, takes intitial
values, and can be reset via clear to those values. It uses the highest-indexed write
port if there are conflicting writes for an entry. There are also read ports for the sake of
symmetry with writing.

Clear | TRegFile

TT= 1111 == 1111

write[0] write[1] write[n-1] read[0] read[1] read[n-1]
Figure 3.2: The TRegFile interface.

[ wrote unit tests for TRegFile: I tested it used as a normal register file; with multiple
reads and writes per cycle; and using its clear method (also tested in the same cycle as
a write). I found a bug in the order of write ports due to testing and then fixed it. All
tests pass.

In synthesis, TRegFile would not map well to real hardware found in, e.g., FPGAs;
however, this project only concerns simulation. A more realistic module for the same
interface could use a write-queue to a register file.

While working on this module, I conversed with one of the creators of BSV — Dr.
Rishiyur Nikhil — via forum posts.
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3.8 Gselect next-address predictor

GSelectBtb.bsv
Copy, paste, tweak!

The next task was to use a modified copy of my Gselect alternate-interface BDP for NAP.
Due to the alternate interfaces, we have less differences to worry about, however some still
prevail. These are the intrinsic complexity of this dissertation — the differences between
BDP and NAP. These remaining differences are listed below.

e There are up to SupSizeX2 predictions per cycle rather than SupSize.
o There are up to SupSizeX2 + 1 updates per cycle rather than SupSize + 1.

 Different bits of the PC should be used in the PT index. The bit range for NAP
starts one bit lower (only one least-significant bit is excluded).

o The type for ValueWithConfidence is Maybe#(Addr) instead of Bool.

o The “default prediction” — the initial remembered value in each PT entry — is
Invalid instead of False.

o Only the validity bit out of the Maybe#(Addr) result type is used as a global his-
tory item, meaning the global history is whether or not each instruction was a
jump/branch or not. Another option would have been to hash the full results to-
gether but this would be noisy and closer to Gshare than Gselect.

3.9 Emergent design

Emergent design involves “refactoring out” commonalities between two units of code [35].
I used it to obtain the parameterisable predictor from the Gselect BDP and Gselect NAP.
I performed all tests before and after this refactoring, as advised in [35].
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3.10 One predictor to rule them all: the parameterisable pre-
dictor

ParamGSelect.bsv

One predictor to rule them all, one predictor to build them, One predictor to
predict them all and in the darkness guide them.

The parameterisable predictor was created using emergent design from my implementa-
tions of the Gselect BDP and the Gselect NAP. Any type definitions used within were
replaced with type parameters. The parameterisable predictor is instantiated as an “inner
predictor” for a module that acts as a BDP wrapper and a module that acts as a NAP
wrapper.

The complete interface is shown in listing 3.4.

interface Predict#(type tokenT, type resultT);
method ActionValue#(PredictResult#(tokenT, resultT))
predict;
endinterface

interface ParamGSelect#(
// type variables omitted but shown in mkParamGSelect
);
method Action nextPc (Addr nextPc) ;
interface Vector#(numPreds, Predict#(tokenT, resultT))
predict;
method Action update(tokenT token, resultT actual);
method Action flush;
method Bool flush done;
endinterface

module mkParamGSelect#(
Addr pcBitMask, // Must have numPcBits set bits.
resultT defaultPrediction,
function globalHistoryItemT makeGlobalHistoryItem(resultT
result)

) (ParamGSelect#(resultT, tokenT, numPreds, numPcBits,
numGlobalHistoryItems, globalHistoryItemT,
numConfidenceBits))

provisos(
// omitted
)

Listing 3.4: The interfaces and module signature for the parameterisable predictor.

The bits to use from the PC when generating PT indexes are controlled via a para-
meter, numPcBits, that says how many bits to use and a provided bit mask. Naturally.
the number of set bits in the mask must match the parameter.

The function argument makeGlobalHistoryItem provides a function that takes a
result and turns it into an item of global history which can be used in future to index the

PT.
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The size of each PT index, call it indexLen, is numPcBits+numGlobalHistoryItems X
SizeOf#(globalHistoryItemT), where numGlobalHistoryItems is the number of items
of global history to consider for each prediction and globalHistoryItemT is the type
of each item. The number of entries in the PT is 2dexlen  Fach entry is of size
SizeOf#(resultT) + 1 because of the confidence bit. Therefore, the predictor size in
bits is

(SiZQDf#(I‘GSU.ltT) + 1) % 2nu.mPcBits+numGlobalHistoryItems><SizeOf#(globalHistoryItemT)

We do not consider the size of the internally held training information, similarly to
how Toooba’s current BDP sizes do not account for “holding” training information by
passing it through the pipeline.

3.10.1 Instantiations

ParamGSelectBdp.bsv, ParamGSelectNap.bsv

The table below shows the parameterisation of the parameterisable predictor as an inner
predictor for both BDP and NAP.

Parameter/argument BDP NAP
resultT Bool Maybe# (Addr)
tokenT UInt#(8) UInt#(8)
numPreds SupSize SupSizeX2
numPcBits 4 3
numGlobalHistoryItems | 8 7
globalHistoryItemT Bool Bool
numConfidenceBits 1 1
pcBitMask ’b111100 ’b1110
defaultPrediction False Invalid
makeGlobalHistoryItem | id isValid

This gives a 8 Kb BDP and a 66 Kb NAP. The parameters used for BDP mimic those
used in Toooba’s implementation of Gselect (GSelectPred.bsv), giving a predictor of
the same size. For NAP, I chose parameters that made a predictor of a size similar to
Toooba’s BTB — its size is 73.5 Kb — and used a similar ratio of PC bits to global history
bits as for BDP.

The function id does nothing and is used because BDP uses the same global history
type as its result type. isValid extracts the validity bit from a Maybe#(Addr) (whether
it is a jump/branch).

These instantiations were evaluated in chapter 4 and found to have poor performance
and accuracy for NAP, which lead me to create another parameterisable predictor with a
custom organisation, which we cover in the next section.
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3.11 Hash-tagged Gselect

PTGS.bsv, PTGS_BDP.bsv, PTGS_NAP.bsv — originally stood for partially-
tagged Gselect

It’s actually a precious gift to be dissatisfied, because that keeps you moving
forward

—Porter Robinson

Unsatisfied with the results of the evaluation in chapter 4 but with days until the submis-
sion date, I decided upon one more iterative development cycle to create the parameteris-
able hash-tagged Gselect (HTGSEL) predictor — a version of Gselect with hashed tags for
the PT entries. This solves the problem of the NAP storing Invalid most of the time,
which effectively says “this isn’t a branch/jump”. T also suggest some future work in this
section, adding to the work suggested in the conclusions in chapter 5.

Hashed tags are used within Toooba’s BTB but my review of the literature has not
found any predictors that utilise both global history and hashed tags and their combina-
tion may be a novel approach.

As shown in figure 3.3, PT entries in HTGSEL have a parameterisable (and therefore
optional) tag to determine if an entry is a hit or a miss for a given PC. The tag comes
from the address bits not selected for the index, hashed via XOR to the tag size.

Entries also have a validity bit in the form of a Maybe type so that entries can be
“deleted” when Invalid should be predicted. The NAP instantiation is parameterised
with address bits instead of a Maybe# (Addr) because the Maybe is added by the predictor.
Entries may be replaced when their confidence is zero or they are invalid.

Invalid —»
Updates
Mux Prediction
. ) Value
ValuewithConfidence >
Validity
Tag
(makeGlobal
HistoryItem)
Y n
|Global History Register (GR) '—/— Prediction Table (PT)
A
| P |

| r? Y / T

Selected bits man
Other bits , ‘® !
64 —m ” '

Figure 3.3: The parameterisable HI GSEL predictor, with n bits of global history, m
selected bits from the PC, and ¢-bit tags.
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Unfortunately, the enforced validity bit means that BDP entries have this bit unne-
cessarily, increasing predictor size by 50%. NB: zero bits are used for the tags in the BDP
instantiation, but this validity bit remains. For comparison, Toooba’s BTB acts as if it
missed when it finds a PT entry with zero confidence but this isn’t a viable alternative
because it would affect BDP behaviour. Perhaps we have found the limit to parameteris-
able predictors, stemming from the intrinsic differences between the modes of prediction,
or maybe there is room for optimism and other organisations should be tried. Perhaps it
would be possible for the predictor to identify when the tag size is zero bits, as it is for
BDP, and not include the validity bit, but this would require alternate control flow in the
update logic, going against the spirit of reusing source code.

An optimisation for the NAP instantiation is storing partial addresses in the inner pre-
dictor; the surrounding NAP forms the predicted address by assuming the upper bits are
not changed by the branch/jump and the least-significant bit is always zero (instruction
fragments are always half-word aligned). Reducing the address bits in each entry allows
for more entries at a similar size (and also accounts for the tag bits). Perhaps room
could also be made for more confidence bits in the entries, which ValueWithConfidence
supports and the predictor has been parameterised for, but this is not yet explored.

Finally, I tweaked the parameters for NAP, using 7 address bits, 4 bits for the GR,
a 24-bit result type, and a 10-bit tag size. This made a 73.7 Kb PT which is an almost
identical size as Toooba’s BTB — 73.5 Kb.
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CHAPTER 4

Evaluation

IRSTLY, we inspect how important metrics for evaluation are collected (§ 4.1). This
F is used to gather results over benchmarks for instantiations of the parameterisable
Gselect predictor for BDP and NAP (§ 4.2), feeding into an evaluation of the entire
project against the success criteria and requirements (§ 4.3); the project is found to
be successful, meeting the whole success criteria and all of the “must” and “should”
requirements. However, we see that the NAP instantiation is rather weak and perform
an investigation into it (§ 4.4). This information is taken advantage of with one more
iterative development cycle for the parameterisable HTGSEL predictor (§ 3.11), which
we then evaluate the BDP and NAP instantiations of (§ 4.5), finding them to meet the
“could” requirement and making the project a total success!

4.1 Predictor monitoring

To allow for evaluation, I added several logging points, with the $display() command
in BSV. These are

o when the NAP is trained due to the decode stage (which involves the BDP) dis-
agreeing with one of its predictions;

e when the BDP is trained from execute due to mispredicting; and

« every 1,000 cycles the TRegFiles output how many of their entries differ from their
initial contents.

The NAP and BDP trainings allow us to find a misprediction rate, which we express in
mispredictions per thousand instructions (MPKI) — a standard unit [12]. The NAP rate is
compared to the decode stage’s more accurate, yet still speculative execution path; NAP
trainings from the execute stage are not considered because they may double count in the
case where NAP was correct but BDP was incorrect. The TRegFile contents monitoring
is for investigating how many entries in the NAP PT are “Invalid*.
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4.2 Performance and accuracies

For each of the 11 benchmarks, I found the
o clock cycles per instruction executed (CPI) — figure 4.1;
o BDP misprediction rate — figure 4.2; and
o NAP misprediction rate, using decode as the ground truth — figure 4.3

across the configurations (with text colour acting as a legend for the figures)

e Toooba with my BDP and its BTB;
e« Toooba with its Gselect BDP and my NAP; and
+ Toooba with my BDP and my NAP.

“My BDP” and “my NAP” refer to instantiations of the parameterisable Gselect predictor.
The PT sizes are equivalent or smaller than Toooba’s Gselect and BTB, as described in
section 3.10.1.

I also report means across benchmarks for each configuration, weighted by the in-
struction counts of the benchmarks and with error bars showing the weighted standard
deviations using the formula

JZ w;(x; 2. where w are normalised weights.
3
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2
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Figure 4.1: CPI for each benchmark across all configurations
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Figure 4.2: BDP MPKI for each benchmark without and with my BDP.
My BDP has near-identical accuracy to Toooba’s Gselect BDP.
la@'-'? d}{\ ]

T‘
& &

. & - o
e \D\Gg\ N éb@ ‘#QG\ o &

500
450

400
350
300
250
200
150
100
50
0

i 4
i

NAP MPEI, with decode as ground truth

3 %g;:* E?;a» c}"* GP{*- w2

oF
Q7 Q7 &

o
¥ P Benchmark ‘$@~°9

Figure 4.3: NAP MPKI for each benchmark without and with my NAP.
My NAP is significantly worse than Toooba’s BTB.

The CPIs in figure 4.1 supplement the above results, showing that the significantly
worse NAP accuracy has a big effect on performance while the near-identical BDP accur-
acy has very little effect on performance.

We now analyse these results in the context of the success criteria and project require-
ments in the following section.
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4.3 Success criteria and project requirements

In this section, we perform an assessment of this project and results against the success
criteria (§ 1.4) and project requirements (§ 2.7).

o I have implemented a Gselect predictor in BSV that is parameterisable in the data
type it predicts and the global history it keeps, meeting success criteria 1 and
requirement M3.

o [ have instantiated the parameterisable predictor for BDP within Toooba and fig-
ures 4.1 and 4.2 show that it has accuracy and performance similar to Toooba’s
Gselect BDP; success criteria 2 and requirements M1 and S1 have been met.

o [ have instantiated the parameterisable predictor for NAP within Toooba and fig-
ures 4.1 and 4.3 demonstrate an investigation into its accuracy and performance,
meeting success criteria 3 and requirement M2; however, the accuracy and perform-
ance are much worse than Toooba’s BTB so requirement C1 has not been met.

« Requirement M4 is met via the alternate interfaces (§ 3.6) which required modific-
ations to Toooba but they were minimal and did not affect control flow, meeting
requirement S2.

o The parameterisable predictor was not instantiated for prediction modes besides
BDP and NAP, meaning requirement W1 was not met as planned.

The entire success criteria and the “must” and “should” project requirements were met,
making this project a success! I also contribute a description of Toooba’s front-end and fix
a bug within, which I take great pride in. Notably, I did take a different approach to this
project than originally planned, using the simpler Gselect predictor organisation instead
of the state-of-the-art TAGE, as otherwise I would have had less time for the interesting
parts of the project.

We will now investigate why the accuracy of the NAP instantiation of the paramet-
erisable Gselect predictor is so poor.
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4.4 Investigation into next-address prediction instantiation
Or, “why is my NAP so bad?”

The Gselect organisation uses a PT with no concept of missing; however, the common
case for a BTB is to miss as most instructions aren’t jumps/branches! Figure 4.4 displays
this well — in each benchmark the PT was storing “this isn’t a jump/branch” in over
90% of its entries at the halfway point.!” Essentially, this unit of hardware specialised for
branch/jump instructions is being bogged-down by the common case of instructions that
do not modify the PC. The configuration used was Toooba’s Gselect BDP with my NAP
instantation of the parameterisable predictor. The PT is effectively less than 10% of the
size it could be, leading to the dramatic reduction in performance and accuracy found in
figures 4.1 and 4.3.
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Figure 4.4: Percentage of the NAP PT holding Invalid halfway through each
benchmark.

I suspect that this issue could be mitigated with the use of tags — some bits from the
PC (or even global history!) would be stored in each PT entry to determine if the entry
is relevant, allowing misses. I test this suspicion in the next section.

4.5 Hash-tagged Gselect

After performing this evaluation, I was unsatisfied and implemented the parameterisable
HTGSEL predictor in section 3.11 to address the limitations found in the previous section.
We now evaluate its performance relative to unmodified Toooba in figures 4.5 and 4.6.
The BDP size is 50% bigger (without need nor effect — each PT entry has an unecessary
validity bit) and the NAP size is almost identical to Toooba’s BTB.

"The halfway point is used because it is representative of the workload within a benchmark rather
than the start-up or wind-down phases
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Legend:

« Unmodified Toooba, using its implementation of the Gselect BDP and
its BTB

« Toooba with instantiations of the parameterisable HTGSEL predictor for
BDP and NAP
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Figure 4.5: CPI for each benchmark.
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Figure 4.6: NAP MPKI for each benchmark.

We can see that the performance and accuracy of the HTGSEL NAP is equivalent to
Toooba’s BTB, meeting requirement C1 and making this project a resounding success!
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CHAPTER 5

Conclusions

ARAMETERISABLE predictors provide the benefits of less total time for development
P and verification; a decrease in the attack surface for vulnerabilities like Spectre; and
allowing advanced techniques and organisations to be shared between modes of prediction,
making this work valuable to processor designers in academia and industry. This work
also demonstrates the benefits and promotes the use of high-level HDLs like BSV — which
allow source code to be neatly re-used through parameterisation and CMD — something
that industry has been slow to adopt.

5.1 Contributions

In this dissertation, as described more thoroughly in section 1.5, I have contributed: a
description of Toooba’s front-end; an accepted fix for a bug in Toooba with security im-
plications; the ValueWithConfidence datatype; the TRegFile module; modified BDP
and NAP interfaces for Toooba with power benefits; the parameterisable Gselect pre-
dictor; the parameterisable HTGSEL predictor; and investigations into the accuracies of
instantiations of the parameterisable predictors for BDP and NAP.

5.2 Future work

The contributions of this novel dissertation open many avenues for future work.

o Application to other modes of prediction, such as memory dependence predictors
and prefetchers (requirement W1).

« Finding optimal parameters for instantiation of the parameterisable predictors, per-
haps taking a gradient descent approach.

« Finding optimal organisations, for example,

— TAGE — the state-of-the-art for BDPs — has a variant for branch target predic-
tion [7] and has been shown to be effective for memory dependence prediction
[8], and

— Yasuo Ishii et al. [36] suggest forming target hashes from the instruction address
and target, then XORing it into a GR that only partially shifts for BTBs. This
approach would be interesting to explore and the parameterisable predictor
could be extended to have another function parameter to allow combining
global history in different ways.

o A version of the TRegFile that maps better to hardware, perhaps using a write
queue.

I suggest some additional interesting future work in section 3.11.
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5.3 Personal and professional development

This timely completion of this project required me to find the confidence to change direc-
tion when it was necessary, switching from TAGE to Gselect for the predictor organisation.

Throughout this project I learnt many best practices, including following a develop-
ment methodology and using emergent design. To ensure the project went smoothly, I
developed Linux knowledge and skills; used and designed tests; followed the framework
of CMD; and used version control and back-ups. I learnt a new programming language
and how to read code effectively. I solidified my knowledge of front-ends in microarchitec-
tures, with specific focus on branch predictors and branch target buffers. Finally, I got to
engage in the open-source community by contributing a bug-fix with security implications
to Toooba which has been accepted.
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Appendix A: Toooba TLB micro-cache bug-fix

“ src_Core/RISCY_000/procs/RVE4G_000/FetchStage.bsv LD 3 +23 -5 I Liad
1 B8 -344,58 +344, 76 0@
F44 344 nextAddrPred. put_pc(pc_reg[pc_final_port]);
345 345 endrule
346 346
347 - Reg#(Vector#(PageBuff3ize Maybes#(vpn))) buffered_translation_wirt_pc <- mkReg(replicate(Invalid));
347+ Reg#(vector#(PageBuffsize, Maybe# (Addr))) buffered_translation_wirt_pc <- mkReg(replicate(Invalid));
348 348 Reg#(vector#(PageBuffsize Tlbresp)) buffered_translation_tlb_resp <- mkRegu;
3489 349 Reg#(Bit#| TLog# (PageBuffsize))) buffered_translation_count <- mkRegU;
358 350
351 + function Maybe#{UInt#({TLog#({PageBuffsize))) matchingVpnorInvalidaddress({Addr pc);
352 + /¢4 Maybe return an entry with the same VPN or same full PC if its an invalid address.
353 + if (walidvirtualaddress{pc)) begin
354 + /# Compare VPNs.
355 + function Maybew{vpn) getvpnIfPossible(maybew{Addr) maybePc);
356 + if (maybePc matches tagged valid .pc) getVpnIfPossible = valid{getvpn{pc));
35T + else getvpnIfPossible = Invalid;
358+ endfunction
3ss  + matchingvpnorInvalidaddress = findElem(valid{getvpn(pc)), map(getvpnifPossible, buffered_translation_wirt_pc));
360+ end else
361 + /# Compare entire PCs
362 + matchingvpnorInvalidaddress = findElem(Valid{pc), buffered_translation_wirt_pc);
363 + endfunction
364+
351 365 rule invalidate_buffered_translation{!iTlb.flush_done);
352 366 buffered_translation_virt_pc <= replicate(Invalid);
353 367 endrule
354 368
355 369 £ getTlbResp catches a iTLB translation and writes it into translation
356 378 /¢ buffer. If there is an active iTlb flush, clear the buffer.
357 aTL rule getTlbResp;
358 372 // Get TLB response
358 373 TlbResp tr <- tlb_server.response.get;
368 374 translateAddress.deq;
361 375 if (iTlb.flush_done) begin
362 376 f¢ check if, because of pipelining, we already have this wpn.
363 o Eool found = elem(Valid({getvpn(translateaddress.first)), buffered_translation_wvirt_pc);
364 - if (!found) begin
365 - buffered_translation_virt_pc[buffered_translation_count] <= valid{getvpn(translateAddress.first));
arr  + let pc = translateaddress.first;
378+ if (tisvalid(matchingvpnorInvalidAddress(pc))) begin
379+ £/ If we don't have this VPN or the PC is inwvalid and doesn't match in full:
388+ buffered_translation_virt_pc[buffered_translation_count] <= Valid{pc);
386 3EL buffered_translation_t1h_resp[buffered_translation_count] <= tr;
367 382 buffered_translation_count <= buffered_translation_count + 1;
368 383 end
369 384 end else buffered_translation_virt_pc <= replicate(Invalid);
378 385 if (werbosity »= 2} $display ("%d Fetch Translate: pc: %x, ", cur_cycle, translateAddress.first, fshow (tr));
371 386 endrule
372 387
373 388 /7 doFetchl pulls a prediction out of the BTB and attempts to translate it
374 389 £ from a small buffer (~2) of recent TLE translations.
375 398 /¢ If the necessary translation is not in the buffer, doFetchl submits a TLB
376 391 #¢ lookup reguest and then retrys until getTlbresp has populated the buffer
377 392 £¢ and the lookup succeeds.
378 393 rule doFetchi(started && !waitForRedirect[8] && !'waitForFlush[a]);
378 394 let pc = po_reg[pc_fetchi_port];
388 395
381 306 f# Grab a chain of predictions from the BTE, which predicts targets for the next
382 397 /4 set of addresses based on the current PC.
383 398 vector#(Supsizexz, Maybes(Addr)) pred_future_pc = nextAddrPred.pred;
384 399
385 400 /¢ Mext pc is the first nmextPc that breaks the chain of pc+d or
386 401 /4 that is at the end of a cacheline.
387 402 Vector#(SupSizeX2, Integer) indexes = genvector;
388 403 function Bool findNextPoc(Addr in_pc, Integer i);
389 484 Eool notlastInst = getlLineInstoffset(in_pc + fromInteger(2*i)) != maxBound;
398 405 Bool noJump = 'isValid(pred_future_pc[i]);
391 406 return (!{notLastInst && nodump));
392 48T endfunction
393 408 Bit#({TLog#{Sup5Sizex2)) posLastSupX2 = fromInteger(fromMaybe(valueof(Supsizex2) - 1, Find(findMextPc(pc), indexes)});
334 409 Maybe#(Addr) pred_next_pc = pred_future_pc[posLastSupxz];
395 418
395 411 // search the last few translations to look for a match.
397 - Maybe#{UInt#( TLog#(PageBuffsize))) m_buff_match_idx = findElem(valid(get¥pn(pc)), buffered_translatien_virt_pc);
412+ Maybe# [(UInt#{ TLog# [ PageBuffsSize))) m_buff_match_idx = matchingvpnorInvalidaddress{pc);
398 413 if (m_buff_match_idx matches tagged valid .buff_match_idx) begin
414+ f¢ Invalidate the buffered TLE response if it was for an invalid virtual address.
415+ if (1validvirtualaddress(pc))
416  + buffered_translation_virt_pc[buff_match_idx] == Invalid;
399 417 let next_fetch_pc = fr ¥ pc + (2 * (zer d[posLastsupx2) + 1)), pred_next_pc);
408 418 let pc_idxs <- pcBlocks.insertAndreserve(truncatelSB(pc), truncatelSB(next_fetch_pc));
401 419 PoIdx po_ide = pc_idxs.inserted;



Glossary

SupSizeX2 twice the value of SupSize 16, 26, 30, 32

SupSize the superscalar width of Toooba — how many instructions there can be in each
pipeline stage in each cycle , 16, 26, 28, 30, 32

TRegFile transactional register file (§ 3.7) 11, 20, 21, 29, 35, 41

ValueWithConfidence remembered value with n-bits of confidence (§ 1.3, § 3.4) 11, 20,
21, 24, 30, 34, 41

batch instructions in the same stage of a superscalar pipeline 16, 17, 23
ChampSim Championship Simulator (§ 2.2) 11-13, 17, 22, 23

compressed an extension of RISC-V where instructions may be two bytes (compressed)
instead of four bytes only , 9, 14, 23

CoreMark® a benchmark 17, 20

emergent design refactoring the commonalities out of similar components (§ 3.9) 20,
21, 31, 42

global history the results of the most recent prior predictions on any address (§ 2.1)
10, 12, 13, 17, 24, 25, 30-33, 39, 41

Gselect a branch direction predictor (§ 2.1) , 10-13, 17, 18, 20-22, 24-26, 28, 30-33,
35-39, 41, 42

Gshare similar to Gselect 12, 13, 30

instruction fragment two bytes that may represent a whole compressed instruction or
half of a non-compressed instruction 9, 14, 16, 25, 34

MiBench an embedded benchmark suite 17, 20
misspeculation incorrect speculation 8, 15

prediction token a value returned by a predictor when making predictions and passed
back to it to identify which training information to use, used in modified Toooba
11, 2629

RiscyOO an open-source RISC-V CPU which Toooba is based on 14, 15, 19

saturating counter a finite-state machine that cannot go below or above boundary
values 9, 10, 23, 24

Spectre a speculative execution vulnerability 8, 11, 41
superscalar a pipeline that processes multiple instructions per stage per cycle , 14, 16

TAGE state-of-the-art BDP — this project was originally going to implement it 8, 10,
38, 41, 42



Toooba an open-source RISC-V CPU (§ 2.4) , 8-23, 25-28, 32-34, 3642

training information information returned by a predictor when making predictions and
passed back to it for training, used in unmodified Toooba and used differently in
modified Toooba , 11, 16, 17, 23-29

BDP branch direction prediction or branch direction predictor (§ 1.2.1) , 7-32, 34-39,
41

BSV Bluespec SystemVerilog (§ 2.3) 8, 10-14, 17, 19-21, 23, 29, 35, 38, 41
BTB branch target buffer (§ 1.2.2) 8-10, 16, 18, 25, 32-34, 36-41

CMD composable modular design (§ 2.8.2) 14, 19, 41, 42

CPI clock cycles per instruction 17, 36, 37, 40

GR global history register 12, 13, 24, 34, 41

HDL hardware description language 13, 14, 41

HTGSEL hash-tagged Gselect 11, 21, 33, 35, 3941

MPKI mispredictions per thousand instructions 35, 37, 40

NAP next-address prediction or next-address predictor (§ 1.2.2) 8-12, 14-22, 25-28,
30-41

PC program counter 7-9, 12, 14, 16, 17, 23-26, 30-33, 39
PT prediction table 8, 12, 13, 16, 17, 23-26, 29-36, 39

TLB translation look-aside buffer 14, 15, 21



Project proposal

Part II Project Proposal: Parameterised

TAGE Prediction Module for Toooba
]

October 20, 2024

1 Introduction

Toooba [1] is a superscalar out-of-order RISC-V core developed by Bluespec
in Bluespec SystemVerilog (BSV) and based on MIT’s RiscyOO. Toooba
supports a small suite of branch predictors, including GSelect, GShare, and
a tournament predictor. It does not, however, support the state-of-the-art
TAGE predictor.

TAGE (TAgged GEometric) [2] is a conditional branch predictor that
uses multiple global history lengths hashed with the branch address to index
into predictor tables. The prediction hit matched by the longest history is
used. A global history is a binary sequence of taken/not taken branches. The
lengths of the histories used form a geometric series. TAGE has also been
applied to indirect branches where the target depends on register state, as
ITTAGE [2], and combined wth TAGE to form COTTAGE [2].
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Figure 1: A 5-component TAGE predictor [2]



2 Description of Work

The start of this project will be to implement a TAGE predictor for Toooba
that is parameterisable in what datatypes it predicts on and the type and
lengths of history used. The predictor will be parameterised for direction
prediction as well as target prediction (indirect branches) and its accuracies
will be evaluated in ChampSim on the same benchmarks as in [2]. These
benchmarks are from the Championship Branch Prediction [3]. Toooba’s
overall simulated performance in MiBench/CoreMark will also be used as a
metric.

Extensions

Documented instances of exact application of TAGE methods to other modes
of prediction in computer architecture have not been found so this could
represent space for novel use-cases, such as memory dependence prediction,
instruction/data cache miss prediction, and prefetching. Implementing the
predictor for these modes and evaluating against Toooba’s overall baseline
performance will form extensions to the project.

Synthesis can form another extension to the project, with opportunity to
evaluate timing and area characteristics and performance on benchmarks.

3 Project Plan

Dr Jonathan Woodruff has agreed to supervise this project in writing. Dr
Robert Mullins has agreed to be a UTO supervisor for all of Dr Woodruft’s
students.

I will use my own laptop for this project using Git and GitHub for revision
history and file backup. I accept full responsibility for this machine and
I have made contingency plans to protect myself against hardware and/or
software failure. The Bluespec compiler, simulator, and IDE will be required.
(Academic) licenses are needed.

Success Criteria

1. Evaluate Toooba’s performance on

(a) its baseline performance in MiBench/CoreMark;



(b) its branch prediction accuracy with GSelect and GShare using the
CBP benchmarks in ChampSim.

. Design unit tests for a parameterised TAGE prediction module.

. Design implementation tests for the parameterised TAGE prediction
module with Toooba.

. Implement the parameterised TAGE prediction module.

. Instantiate and integrate the parameterised TAGE prediction module
for branch direction prediction in Toooba.

. Evaluate the performance of the parameterised TAGE prediction mod-
ule for branch direction prediction in Toooba.

. Instantiate and integrate the parameterised TAGE prediction module
for branch target prediction in Toooba.

. Evaluate the performance of the parameterised TAGE prediction mod-
ule for branch target prediction in Toooba.

. Evaluate Toooba’s new performance in MiBench/CoreMark.

Starting Point

I have done background reading on TAGE, namely the foundational paper
[2]. T have completed the first 3 exercises (of 8) of the Cambridge Bluespec
Web-Tutor. I have inspected the source code for Toooba [1] to see which
pipeline stage branch predictors are updated/used.

Work Plan

The following plan is broken into 10 work packages, each taking approxi-
mately 2 weeks, and beginning in the middle of week 2 of Michaelmas term
(2024). There is a 1 week break at the end of each term to catch up on
supervision work and a 2 week break for Christmas/New Year’s.

1. 215 Oct — 1% Nov

Learn Bluespec SystemVerilog via the CL’s web tutor. Study prior
work on TAGE.



2. 4" Nov — 15" Nov
Set-up GitHub repository. Evaluate Toooba’s baseline performance
with MiBench and/or CoreMark.

3. 18" Nov — 29" Nov
Evaluate Toooba’s branch prediction accuracy with its implemented
branch predictors. This will require compiling (to C++ with Verilator)
and adapting BSV source code to C++ compatible with ChampSim.

4. 9" Dec — 20" Dec
Plan the implementation of the parameterised TAGE module.

5. 6™ Jan — 17" Jan
Unit tests and integration tests for the parameterised TAGE module.

6. 20" Jan — 31 Jan
Begin to implement the parameterised TAGE module. Progress Re-
port.

7. 3" Feb — 14" Feb
Implement the parameterised TAGE module (cont.).

8. 17™" Feb — 28" Feb
Instantiate and integrate the parameterised TAGE module for branch
direction prediction in Toooba. Evaluate accuracy in ChampSim.

9. 34 Mar — 14" Mar
Instantiate and integrate the parameterised TAGE module for branch
target prediction in Toooba. Evaluate accuracy in ChampSim.

10. 24 Mar — 4*® Apr
Evaluate Toooba’s new performance with MiBench and/or CoreMark.

There are 6 weeks remaining after package 10 which will be used for write-up
and extensions.
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